Hamilton Cycle Decomposition of the Butterfly Network
نویسندگان
چکیده
in this paper, we prove that the wrapped Butterfly graph WBF(d; n) of degree d and dimension n is decomposable into Hamilton cycles. This answers a conjecture of D. Barth and A. Raspaud who solved the case d = 2. Key-words: Butterfly graph, graph theory, Hamiltonism, Hamilton decomposition, Hamilton cycle, Hamilton circuit, perfect matching. (Résumé : tsvp) This work has been supported by the CEFIPRA (French-Indian collaboration) and the European project HCM MAP. Version of June 28, 1996 to appear in PARALLEL PROCESSING LETTERS. Email : {bermond, darrot, delmas, sp}@unice.fr Unité de recherche INRIA Sophia-Antipolis 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France) Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65 Décomposition en cycles Hamiltoniens du réseau Butterfly Résumé : dans cet article, nous prouvons que le graphe Butterfly rebouclé WBF(d; n) de degré d et de dimension n est décomposable en cycles Hamiltoniens. Ce résultat répond à une conjecture de D. Barth et A. Raspaud qui ont résolu le cas d = 2. Mots-clé : graphe Butterfly, théorie des graphes, Hamiltonisme, décomposition Hamiltonienne, cycle Hamiltonien, circuit Hamiltonien, couplage parfait. Hamilton cycle decomposition of the Butterfly network 3
منابع مشابه
Hamilton Circuits in the Directed Butterfly Network
Jean-Claude Bermond, Eric Darrot, Olivier Delmas, Stéphane Perennes* Thème 1 — Réseaux et systèmes Projet SLOOP Rapport de recherche n ̊???? — Juillet 1996 — 25 pages Abstract: in this paper, we prove that the wrapped Butterfly digraph ~ WBF(d; n) of degree d and dimensionn contains at least d 1 arc-disjoint Hamilton circuits, answering a conjecture of D. Barth. We also conjecture that ~ WBF(d; ...
متن کاملHamilton Circuits in the Directed Wrapped Butterfly Network
in this paper, we prove that the wrapped Butterfly digraph ~ WBF(d; n) of degree d and dimension n contains at least d?1 arc-disjoint Hamilton circuits, answering a conjecture of D. Barth. We also conjecture that ~ WBF(d; n) can be decomposed into d Hamilton circuits, except for {d = 2 and n = 2}, {d = 2 and n = 3} and {d = 3 and n = 2}. We show that it suffices to prove the conjecture for d pr...
متن کاملSymmetric Hamilton Cycle Decompositions of Complete Graphs Minus a 1-Factor
Let n ≥ 2 be an integer. The complete graph Kn with a 1-factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that Kn − F has a decomposition into Hamilton cycles which are symmetric with respect to the 1-factor F if and only if n ≡ 2, 4 mod 8. We also show that the complete bipartite graph Kn,n has a symmetric Hamilton cycle decomposition if and only if n ...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملThe use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation
In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parallel Processing Letters
دوره 8 شماره
صفحات -
تاریخ انتشار 1998